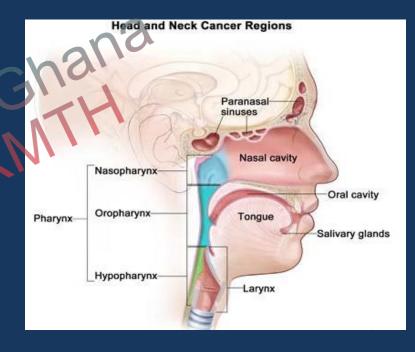
18TH ICRT, GHANA 2023 AH HOTEL, ACCRA, GHANA MAY 1-4, 2023

FDG PET/CT in Head and Neck cancers and in Gliomas


Salah Eddine Bouyoucef Head od Department of nuclear medicine Director of PET/CT Center CHU of Bab El Oued Algiers Algeria

Cancers of the Head and Neck Region

Soft tissue cancers location :

- Nasopharynx
- Oropharynx
- Larynx (Hypopharynx)
- Paranasal tumors
 (maxillary & ethmoid sinus)
- Mucosal melanoma
- Oral cavity
- Salivary gland
- Lip

Head Neck Tumors Globocan data

7th most common cancer worldwide

Greatest burden: low- and medium-income countries

Men/women risk ratio: 2,3/1 (Globocan 2018)

- Histology: >90% squamous cell and adeno Carcinomas
- Prognosis: good to bad decreases significantly from early stage (80%) to locally advanced disease (40%)

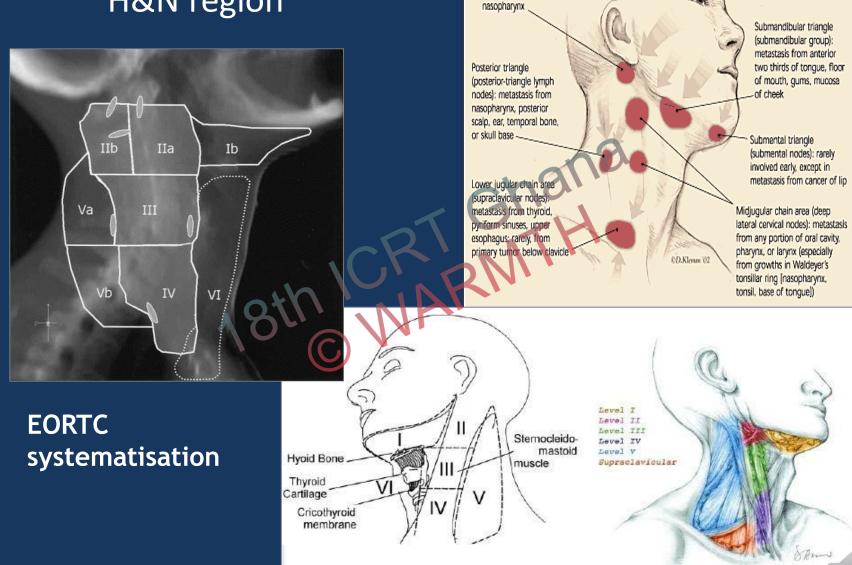
Main Etiologies of Head Neck cancers

Most Commons - tobacco & alconol

Epstein–Barr (EBV, nasopharynx ca) & Human papillomavirus (HPV, 🗆 50% oropharynx ca)

Biological complexity

Structures invasion are linked to biological structures of the neoplasm


FDG-PET/CT in the Assessment of H&N Malignancies

Main Indications:

- Initial staging (N&M): nodal & distant disease
- Defining the prognosis (presence & degree of metabolic activity)
- Identify the primary lesion
- Diagnosis of recurrence and restaging
- Treatment planning
- Assessing treatment response

LN groups & levels I-VI in the H&N region

Upper jugular chain or jugulodigastric area (posterior auricular

nodes): metastasis from

2002 DAVID KLE

000

LN Drainage of Head and Neck Malignancies

Region	LN drainage
Lip (upper & lower)	Submandibular, submental, subdigastric
Oral cavity	Subdigastric, upper jugular, submandibular
Oropharynx ((tongue, tonsillar, para- pharyngeal)	Upper, middle & deep cervical, subdigastric, para- & retro-pharyngeal
Nasopharynx	Retropharyngeal, deep cervical
Hypopharynx	Mid- & posterior cervical triangle, para- tracheal
Larynx (vocal cords, supra- & Sub- glottis)	Subdigastric, mid-internal & inferior jugular
Paranasal (nasal fossa, frontal, ethmoidal, maxillary, sphenoid sinuses)	Submaxillary, base of skull, subdigastric, submandibular, jugulo-digastric
Salivary glands (parotid, submaxillary)	Preauricular, jugulo-digastric, intraglandular, submental

0000

FDG-PET/CT for Assessment of LN Involvement in head and Neck Malignancies

Provides relevant information

- Number of nodes: single/multiple
- Distribution: ipsi-/contra-/bi-lateral
- Size
- Location: anatomic levels I-VI

Incremental synergistic data of PET/CT

- Metabolic (FDG): involvement of normal size nodes
- Anatomic (CT): presence of nodal mets adjacent to highly FDG-avid primary tumors

CONCLUSION 1.0 -We found that high ¹⁸F-FDG uptake (SUV > 6.0) was a <u>week group</u> 0.8 Survival probability marker for poor outcome in patients with SCC of the orophar-0.6 ynx, confirming earlier findings showing that pretreatment RT group 0.4 tumor 18F-FDG uptake represents an independent prognos-0.2 tic factor in patients with head and neck cancers. To our 0.0 36 12 24 36 Months Months SUV ≤ 6.0 в **FIGURE 1.** Actuarial DFS in patients treated with surgery (n =(N = 27)1.0 31) or RT (n = 21) as primary treatment modality (P = 0.036) Surgery group RT group 1.0 0.8 Survival probability $SUV \le 6$ 0.6 0.8 Survival probability SUV > 6.0 0.4 0.6 0.2 0.4 0.0 0.2 12 24 36 48 Months 0.0 FIGURE 3. Actuarial DFS in patients treated with surgery or RT as primary treatment modality in patients with tumor SUV ≤ 12 24 36 0 48 *Surgery group: surgery + Months surgery followed by RT (n = 15) resulted in a statistically better

FIGURE 2. Actuarial DFS using cutoff of 6.0 for SUV of ¹⁸F-FDG (low vs. high SUV, n = 27 vs. 25) (P = 0.036).

RT as primary treatment modality in patients with tumor SUV \leq 6.0 and SUV > 6.0. In 25 patients with SUV > 6.0, primary surgery followed by RT (n = 15) resulted in a static static better survival than did RT with chemotherapy (n = 10) followed by surgical salvage (A; P = 0.043). In 27 patients with SUV \leq 6.0, there was no significant difference between surg v plus RT (n = 16) and RT plus chemotherapy (n = 11) (B; P = 0.329).

Evaluation of 18F-FDG PET/CT for diagnosing cervical nodal metastases in patients with oral cavity or oropharynx carcinoma

Yongnan Piao, MD,^a Bayarkhuu Bold, MD,^a Abulajiang Tayier, MD,^a Ryuji Ishida, MD,^a Ken Omura, DDS,^b Norihiko Okada, DDS,^c and Hitoshi Shibuya, MD, PhD,^a Tokyo, Japan TOKYO MEDICAL AND DENTAL UNIVERSITY (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:933-938)

Table	IV.	Comparis	on of	sensit	tivity,	specificit	y, PPV,
NPV,	and	accuracy	for n	ode l	evels	between	Shöder
Heiko	grou	up ⁹ and th	e pres	ent st	tudy re	esults	

0 1	1	~	
	Shöder He	iko	Present study
ТР	6	10	71
FP	6		24
TN	127		236
FN	3		14
Total	142		345
Sensitivity (%)	67		84
Specificity (%)	95		91
PPV (%)	50		75
NPV (%)	98		94
Accuracy (%)	94		89

PPV, Positive predictive value; *NPV*, negative predictive value; other abbreviations as in Table I.

 Table III. Classification by size for cervical lymph

 nodes with the metastasis confirmed by histopathology

RN	PET/CT					
Size (mm)	TP	FN				
-						
Total	103	61				

CONCLUSIONS

Combined PET/CT enabled the early detection of cervical nodal metastasis of oral or oropharynx cancers, but the diagnosis of metastasis was not accurate if the metastases had a maximum diameter of <10 mm. Combined PET/CT can accurately detect lymph node metastases levels to supply good information to surgeons for early treatment of patients.

000

Table 1 Patient Characteristics		Kubicek et al. Head & Neck Oncology 2010, 2: 19 http://www.headandneckoncology.org/content/2/1/19			Head & Neck
Characteristic	Total				
Total	212	RESEARCH			Open Access
Gender		FDG-PFT sta	aina and	importan	ce of lymph node
Male	124	SUV in head	and nec	k cancer	ee of tymph hode
Female	88				shwer Reddy ² , Charles Intenzo ¹ ,
Age (median, years)	58	Reginald W Dusing Witch	ell Machtay ^{1,5}	og. , , e	
Tumor Site		Stage	Kr		
	100	TQ TI-2	13 66		
		ТЗ-4	120		
		Recurrent	13		
		NO	78		
		N1	36		
		N2-3	98		
		Chemotherapy	159		
		Surgical resection	42		

FDG-PET/CT for T-Staging Nasopharynx Carcinoma with Extension to Base of Skull

Role of FDG-PET/CT for T-staging, Role of PET/MR

- Limited value, less anatomy detail vs. MRI
- MRI required for planning surgery & radiotherapy
- Important role of PET/MR

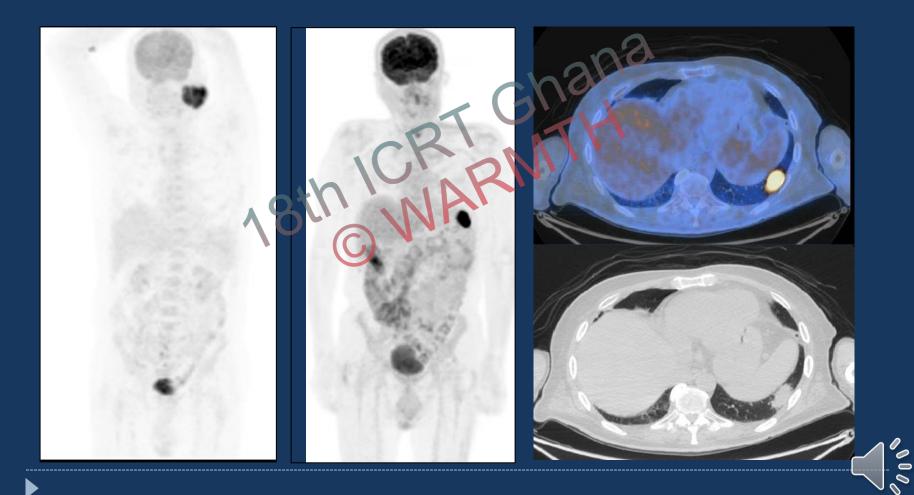
2nd Primary Tumors (Synchronous or Metachronous)

Risk for 2nd primary neoplasms:

- Synchronous –within 6 months: 1.4 –18%
- Metachronous –after 6 months, within 5 years: >20%
 Location:
 - Larynx or pharynx
 - Lung
 - Eosophagus

Performance indices of FDG-PET/CT:

Sensitivity: 87%, Specificity 95%


Larynx Ca & 2nd Metachronous Primary Tumor in Esophagus

Larynx and esophagus cancers

Left Parotid carcinoma and Primary in Left of Lung

¹⁸F-FDG PET as a Routine Posttreatment Surveillance Tool in Oral and Oropharyngeal **Squamous Cell Carcinoma: A Prospective** Study J Nucl Med 2009; 50:1940–1947

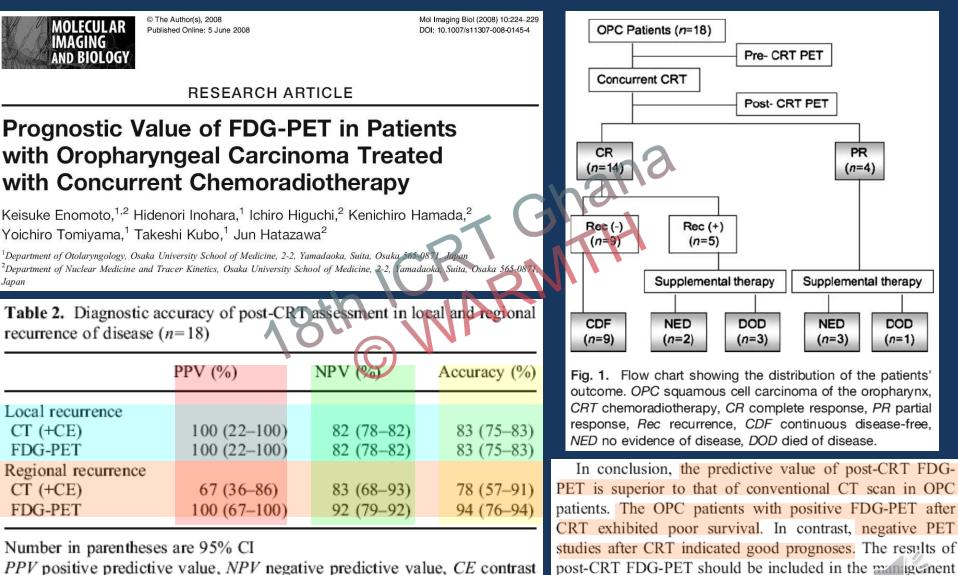

DOI: 10.2967/jnumed.109.065300

TABLE 3. ¹⁸ F-FDG PET and Regular Follow-up Performances at Patient Level										
Modality	TP	FN	TN	FP	Sensitivity	Specificity	PPV	NPV	Accuracy	
¹⁸ F-FDG PET	18*	* C	13	17	100%†	43%	51%†	100%†	65%†	
Regular follow-up	—	18		12	0%	60%	—	50%	38%	
TABLE 4. Accuracy of 156 Serial ¹⁸ F-FDG PET Scans in Detecting Persistent, Recurrent, or Metastatic HNSCC Overall and at Different Anatomic Sites										

Area	TP	FN	TN	FP	Sensitivity	Specificity	PPV	NPV	Accuracy
All regions	30 (50)	1	90	35 (15)	97% (98%)	72% (86%)	46% (77%)	99% (99%)	77% (90%)
Head	16 (32)	—	118	22 (6)	100% (100%)	84% (95%)	42% (84%)	100% (100%)	86% (96%)
Neck	7 (8)		142	7 (6)	100% (100%)	95% (96%)	50% (57%)	100% (100%)	96% (96%)
Distant	16 (23)	1	128	11 (4)	94% (96%)	92% (97%)	60% (85%)	99% (99%)	92% (97%)

In parentheses are false-positive results with known pathologic substrates other than malignancy, such as mucositis or fracture, that were counted as true-positive.

TP = true-positive; FN = false-negative; TN = true-negative; FP = false-positive; PPV = positive predictive value; NPV = negative; predictive value.

of the OPC patients.

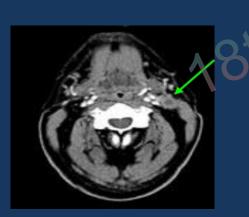
PPV positive predictive value, NPV negative predictive value, CE contrast enhancement

FDG PET/CT imaging of head & neck cancer Indications FDG

FDG PET/CT. Carcinoma of unknown primary : Lymph node metastases from squamous cell carcinoma

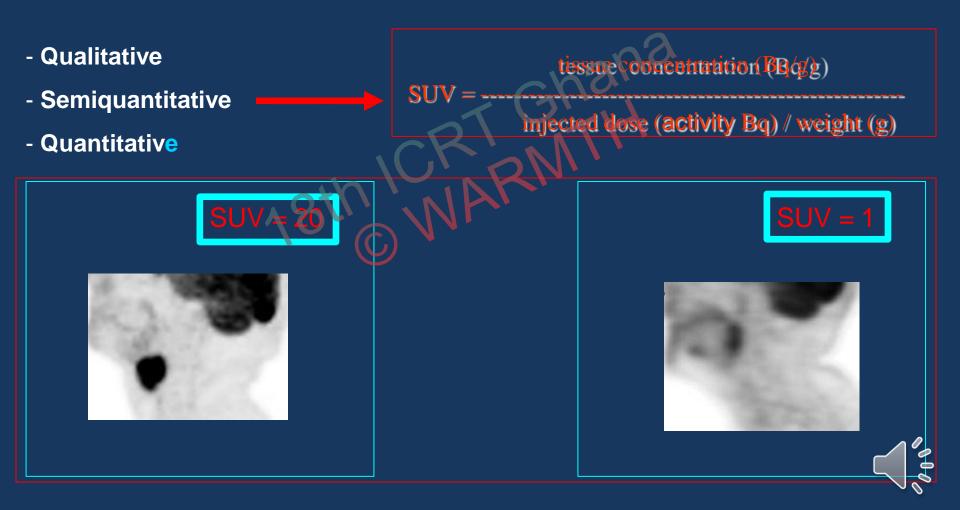
PET/CT is around 50%

SUVmax=11.2 Undifferenciated Carcinoma SUVmax=4.1 Right vocal cord

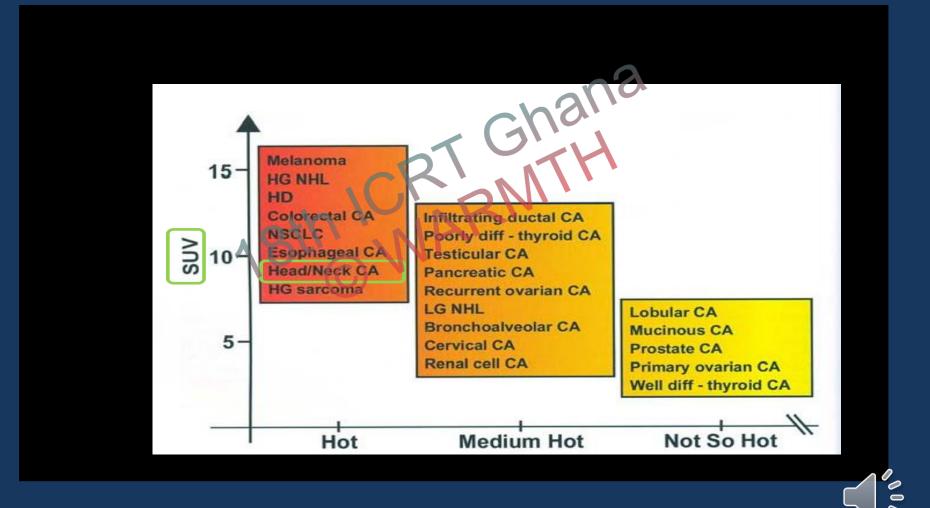

FDG PET/CT imaging of head & neck cancer : Detection of disease recurrence

FDG PET/CT imaging of head & neck cancer : Detection of disease recurrence

• FDG PET higher diagnostic accuracy than CT/MRI


SUVmax=6.8

Laryngectomy Uncertain recurrence



ASSESSMENT OF THERAPY RESPONSE

PET/CT FDG Quantification

FDG PET/CT imaging of head & neck cancer : Detection of disease recurrence: False positives causes

Previous treatments produce distortion

- Mucosal surfaces
- Tissue planes
- Anatomical structures
- Difficulty in interpreting CD
 - Soft tissue edema
 - Inflammation
 - Fibrosis
- Early detection of recurrence increases the likelihood of effective treatment.

Optimal Use of FDG-PET/CT in H&N Tumors

Johnson et al, Laryngoscope 2014

FDG is less indicated:

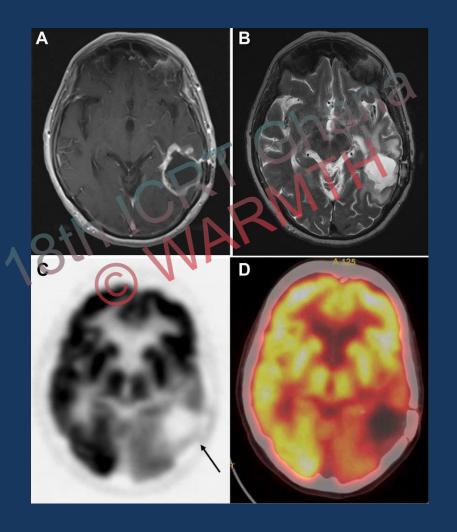
- When there is no diagnosis of malignancy (only clinical suspicion)
- In pretreatment staging of stage I/II tumors
- In known non-/less- FDG avid malignancies (e.g. Thyroid Ca)

Caution:

salivary gland tumors (highly FDG-avid benign lesions)

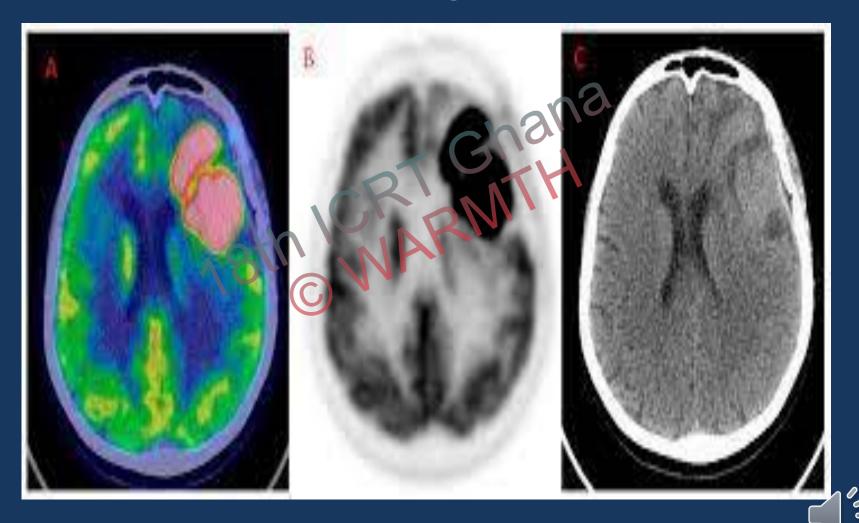
Data demonstrate:

- Therapeutic advantages of early detection of recurrence (by 6-12 mo. to clinical symptoms)
- Improved loco-regional control or DFS using FDG-PET/CT surveillance

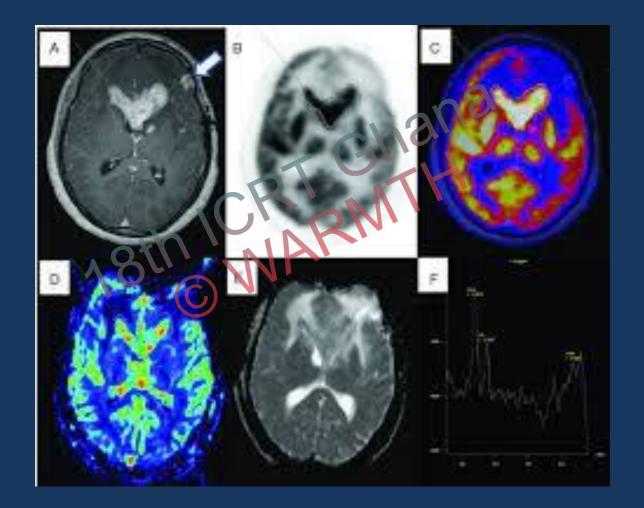

FDG-PET/CT in H&N Tumors NCCN Clinical Practice Guidelines update 2022

Recommend FDG-PET/CT for:

- Initial staging of seemingly advanced disease (stage 3 & 4): oral cavity, oro- & hypo-pharyngeal, larynx cancer
- Distant metastatic work-up: nasopharyngeal cancer (N2-3 disease), mucosal melanoma
- Evaluation of Cancer of unknown primary presenting with a neck mass
- Post-treatment evaluation in patients with NO & clinical suspicion of active disease (at 12 weeks), further management relies on results of FDG study; if negative optional to proceed with further crosssectional imaging



Non active suspicion of relapse of Gliobastoma FDG PET: : Necrosis process



Very active Gliobastoma on FDG PET: High Grade

Non active suspicion of relapse of Gliobastoma FDG PET: : Necrosis process

Conclusion

Advanced imaging techniques with FDG PET/CT and PET/MR :

- Demonstrate metabolic heterogeneity within most gliomas
- Provide localised and specific information that is useful for planning and monitoring of treatment
- Targeting of biopsies
- Early detection of recurrence
- Imaging needs integration with multidisciplinary glioma management

• PET Imaging has shown its potential to increase the efficiency of therapeutic

